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 Abstract 

This Lecture mainly based on [1, 2] presents the role of  Polarimetry in SAR Interferometry. A general formulation 
for vector wave interferometry is presented that includes conventional scalar interferometry presented in the 
respective former lecture as a special case. Based on this formulation, the coherence optimization problem can be 
solved to obtain the optimum scattering mechanisms that lead to the best phase estimates. Comparison with 
conventional single-polarization estimates illustrates the significant processing gains that are possible if there is 
access to full polarimetric interferometric data. A comparison with conventional single-polarization presented in 
former lectures illustrates the significant processing gains that are possible if access to full polarimetric 
interferometric data is possible. The strong  polarization depends of the coherence will be addressed and the 
analytical solution for optimum polarization states that maximize the interferometric coherence will be 
derived and applied to experimental data. These improved interferogrammes allow an improvement of the 
accuracy of derived DEM products. 
The introduction of a new coherent decomposition theorem for interferometric applications based on the Singular 
value spectrum of a 3 x 3 complex matrix allows the  decomposition of polarimetric interferometric problems 
into a set of coherent scattering mechanisms. As a consequence, it is possible to generate interferograms related to 
certain independent scattering mechanisms and extract the height differences between them. The limitation of this 
technique is the existence of independent scattering mechanisms located at different height positions. 
To explain the physical origin of these mechanisms, a coherent electromagnetic scattering model will be 
established which, additionally, can be used to establish the suitability of the decomposition algorithm for 
solving the problem of estimating the location of the effective scattering center, which is a critical point in the 
physical interpretation of interferograms. However, these  introduction of Polarimetry in interferometric 
processing requires that fully coherent polarimetric data must be collected in order to separate the scattering 
mechanisms.. In this connection polarimetric Differential Interferometry will be considered also. 
The phase difference between the optimum interferograms obtained by the application of the algorithm on 
the SIR-C data turned out to be strongly correlated with the actual forest height. This was a major result 
indicating the potential of the coherent combination of polarimetry and interferometry. 
[1] Cloude, S.R.”Polarimetric SAR Interferometry”, IEEE Trans.GRS. vol. 36. no. 5. September 1998 
[2] Cloude S.R, and K.P. Papathanassiou. “Polarimetric SAR Interferometry.” IEEE Trans. Geosci. Rem. 
Sens., vol. 36, no. 5, pp. 1551-1565, September 1998. 

 
1. Introduction 

Polarimetric SAR Interferometry was a first step in the abatement of the scattering ambiguity problem in 
the height direction. By combining interferometric and polarimetric techniques, it enables the separation 
of different scattering mechanisms within a resolution cell and at the same time, the estimation of the 
associated heights. Both, radar polarimetry and radar interferometry are phase sensitive techniques. 
The use of polarimetric SAR data has been widely addressed in the last decade. The tight relation 
between natural media physical properties and their polarimetric features leads to highly descriptive 
results that can be interpreted by analyzing underlying scattering mechanisms. Interferometric data on 
the other hand provide information concerning the coherence of the scattering mechanisms and can be 
used to retrieve observed media structures and complexity. The complementary aspect of polarimetric 
and interferometric information leads to a combination of both approaches. In ‘Polarimetric-
Interferometric Synthetic Aperture Radar (POL-INSAR) Imaging’ it is possible to recover textural and 
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spatial properties simultaneously. This includes the extraction of ‘Digital Elevation Maps (DEM)’ 
from either ‘fully Polarimetric (scattering matrix) or interferometric SAR image data takes’ with the 
additional benefit of obtaining co-registered three-dimensional ‘POL-IN-DEM’ information. 
 
Over the next few years several free-flying remote sensing satellites will be deployed in orbit, 
providing the international scientific, commercial and military communities with a wealth of new data. 
Many of these will carry advanced multi-channel imaging radars designed to combine various levels 
of polarisation diversity with radar interferometry.  
 
Polarimetric interferometry has proved to be a valuable tool for many applications. One is remote 
sensing where it has been shown in several recent publications that by using interferograms in multiple 
polarisation channels, estimation of vegetation height, underlying ground topography and mean 
extinction is possible [11,14,23].  
 
Polarimetric Synthetic Aperture Radar interferometry (POLInSAR) can also be used to enhance the 
detection of military targets hidden beneath foliage. The key idea is to note that for random volume 
scattering the interferometric coherence is invariant to changes in wave polarisation. On the other 
hand, in the presence of a target the coherence changes with polarisation. It can be shown that under 
general symmetry constraints this change is linear in the complex coherence plane. These observations 
can be used to devise a filter to suppress the returns from foliage clutter while maintaining the signal 
from hidden targets. 
 

2. Radar Polarimetry 
As shown in a previous lecture, an important extension to single-channel SAR remote sensing is the 
utilisation of polarised waves. A polarimetric SAR system measures the electric field, backscattered 
by the scene, including its polarisation state. The interaction of the transmitted wave with a scattering 
object transforms its polarisation.  
 
One special characteristic of SAR polarimetry is that it allows a discrimination of different types of 
scattering mechanisms. This becomes possible because the observed polarimetric signatures depend 
strongly on the actual scattering process. In comparison to conventional single-channel SAR, the 
inclusion of SAR polarimetry consequently can lead to a significant improvement in the quality of 
data analysis. Certain polarimetric scattering models even provide a direct physical interpretation of 
the scattering process, allowing an estimation of physical ground parameters like soil moisture and 
surface roughness [11], as well as unsupervised classification methods with automatic identification of 
different scatterer characteristics and target types [4,5].  
 
SAR polarimetry additionally offers some limited capability for separating multiple scattering 
mechanisms occurring inside the same resolution cell and can be deemed as a first step in resolving 
the ambiguous scattering problem in SAR, as mentioned above. With polarimetric decomposition 
techniques a received signal can be split into a sum of three scattering contributions with orthogonal 
polarimetric signatures. This can be used for extracting the corresponding target types in the image, 
even in the case that they are occurring superimposed. Also, if a signal is disturbed by undesired 
orthogonal contributions, in this way the relevant components can be extracted.  

 
3. The Phase 

In radar polarimetry [1] we analyze the shape of the transmit (and receive) polarisation ellipse, as 
shown schematically in Figure 1a, for the purposes of improved information extraction. Figure 1a 
shows the spatial helix resulting from a combination of horizontal (H, in green) and vertical (V, in 
blue) transmitted components.  
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Figure 1a : The Polarisation Ellipse and Spatial helix decomposed into orthogonal components x 
(horizontal H) and y (vertical V) [Pottier, lectures on polarimetry] 

 
 
 
By controlling the relative amplitudes we can rotate the polarisation from H through 45 degrees to V. 
However, by adjusting the relative timing (phase) of the blue and green components we can also adjust 
the shape of the ellipse as shown in Figure 1b. It is this combined amplitude and phase dimension that 
leads to increased information content in remote sensing applications, since the level of scattering we 
observe from natural terrain depends on the shape of this ellipse. [1,2,3,4,5] 
 

 
 

Figure 1b : The Polarisation Ellipse 
 
To represent this combined amplitude and phase control mathematically, we describe the wave using a 
pair of complex numbers, ex and ey as shown in equation 1. The phase difference i.e. φ = arg(exey*) 
then controls the shape of the ellipse, with linear polarisations defined by  φ = 0. Note that the ellipse is 
actually a dynamic quantity, being the time locus of the helix in a fixed spatial plane. Consequently the 
locus can move clockwise or counter-clockwise (when viewed in the –z direction), corresponding to 
what are termed left and right-handed polarisations respectively. The set of all possible left and right 
handed ellipses can then be conveniently mapped onto the northern and southern hemispheres of the 
Poincaré sphere. Figure 1c [1,6] 
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Furthermore, our ability to extract quantitative information rests on the stability of this phase or the 
robustness of the spatial helix to small time and spatial shifts. A generic way to define the stability of 
this helix is to use the wave coherency matrix [J], taken at a point in space with position vector r. and 
formed as an average of all possible complex products between ex and ey  as shown in equation 1, [6] 
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ex

ey
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As its name suggests, this matrix allows us to calculate not only the wave intensity (from the diagonal 
components) but also the coherence, which is a measure of the phase stability of the wave, as defined in 
equation 2 [7]. 
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Figure 1c : The Poincaré sphere 
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A key benefit of employing ratios such as equation 2 is that absolute amplitude terms cancel, so 
removing some of the structural dependence in scattering from random media. It is this observation that 
shifts interest in polarimetry towards the study of ratios as potentially more robust indicators of 
physical structure (see examples in table I).  
 
In active microwave sensing we assume xyγ~ =1 for the transmitted wave and hence the transmitted 

spatial helix is very stable. However, when the wave is scattered or reflected from natural media, its 
phase and amplitude will in general be modified (as shown schematically in Figure 2a).  This process 
again must be described by a set of complex numbers, this time by a set of four, being the elements of 
the coherent scattering matrix [S] defined as shown in equation 3. This matrix characterises all possible 
phase and amplitude changes due to copolar (diagonal elements) and cross-polar (off diagonal) 
scattering. In practice, for the common case of backscatter, the reciprocity theorem for electromagnetic 
waves reduces this set to three complex numbers, as the cross-polarisation terms are equal SHV = SVH. 
Note that while this is widely true, there are a few special but important cases where it breaks down, as 
for example in low frequency radio wave propagation through the ionosphere, where the earths 
magnetic field lines break this reciprocity symmetry and as a result the cross polarisation terms are no 
longer equal. This observation can be used to calibrate the effects of Faraday rotation due to trans-
ionospheric propagation, an important issue for the deployment of low frequency space-borne radars 
[8]. 
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          (3) 
 
One key idea in polarimetry is that if we know all four of these [S] matrix elements then we can 
calculate the phase stability of the scattered signal for arbitrary incident ellipse, using a 3 x3 covariance 
matrix [C] as shown in equation 3.  In this way we don’t have to actually change the shape of the 
transmit ellipse (which would call for control of the antenna and microwave electronics) but can 
simulate the same effect off-line in the processing stages. For this reason there has been a lot of interest 
in the development of microwave switching systems that are capable of measuring all four elements of 
[S] (the simplest is to switch each transmit pulse between X and Y orthogonal polarisations with 
simultaneous reception of the X and Y components). Note that one important step is to calibrate system 
distortion effects due to crosstalk (which causes problems with estimation of the off-diagonal elements 
of [S]) and channel imbalance due to phase and amplitude distortions of the radar system itself. The 
development of robust calibration procedures has been a key enabling step in the quantitative 
exploitation of this technology [9].  Such systems are called ‘quadpol’ as they measure 4 complex 
numbers for each pixel in the image and allow the user to explore the whole Poincaré sphere. There are 
currently several mature airborne quadpol radar sensors with such a capability, but significantly there 
will soon be a new generation of free-flying satellite radars operating in this mode. The European 
Terrasar-X/L, Japanese ALOS-PALSAR and Canadian Radarsat-2 are important examples. The main 
question then becomes, how can we find the best polarisation combination to derive information 
products exploiting the scattering of waves from surfaces and vegetation? To answer this we must look 
more carefully at equation 2 and the whole issue of coherence. 
 

4. Coherence and Entropy 
To calculate polarimetric coherence, we first choose a pair of polarisations x and y, then measure the 
(complex) components of the signal in these two channels and estimate the coherence by averaging. 
However, even for a fixed wave, the coherence obtained with this method will depend on the choice of 
our reference pair x and y (e.g. choosing x=y will give a coherence of 1, while less obvious but more 
important is the idea that for every wave we can choose an orthogonal pair x and y so that the 
coherence is zero).  This goes against the idea that the spatial helix is somehow independent of the co-
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ordinates we use to represent it, and that consequently we should be able to describe its stability in co-
ordinate invariant terms. One way to do this is to describe the helix stability using a generalised 
coherence or entropy (another popular way is to use the degree of polarisation [6]). The wave entropy 
is formally defined from the ratio of eigenvalues of [J] (see equation 4) and has a value of 0 when the 
helix is perfectly stable and 1 when it becomes noise like [2,4,6].  
 

0 ≤ Hw = − pi log2 pi ≤1,   pi =
λi J[ ]( )

λ∑i=1

2

∑
                                                  (4) 

 
By extension, we can also describe the loss of helix stability after scattering by the entropy of the 3 x3 
covariance matrix [C] in equation 3, as defined in equation 5 [2,4] 
 

0 ≤ Hs = − pi log3 pi ≤1,   pi =
λi C[ ]( )

λ∑i=1

3

∑
                                                                           (5) 

 
It is important to realize that this scattering entropy is characteristic of the scattering medium itself. For 
example, for low frequency volume scattering from a cloud of ellipsoidal particles of dielectric 
constant rε  and axial ratio m, the normalized eigenvalues of [C] can be evaluated explicitly as shown 
in equation 6 [2,4,16,17] 
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For spherical particles (R =1) this leads to zero entropy but for a cloud of ‘wet dipoles’ (m and εr large) 
the entropy rises to 0.95. Hence a measurement of entropy relates to information about composition of 
the volume. Importantly, we can estimate scattering entropy numerically on a pixel-by-pixel basis from 
quadpol radar imaging data. Figure 2b shows an example of the entropy or phase stability of a mixed 
scene, being the Oberpfaffenhofen area as collected by the DLR L-Band ESAR system. We note that 
over non-vegetated surfaces (left bottom corner in figure 2b) the entropy is low and hence the scattered 
wave helix is very stable for all types of transmit polarisation. This can be exploited for quantitative 
moisture and roughness estimation of non-vegetated land surfaces by choosing appropriate robust ratios 
of scattering elements as shown for example in table I. [10,11,12,13,14,15] 
 
The urban areas (upper right corner) in figure 2 show moderate entropy, but the worst case arises for 
vegetation (lower right corner). Here we see high entropy due to volume scattering by the random 
components of the vegetation cover (as in equation 6). These observations are independent of the actual 
scene considered and hence have been suggested by several authors as suitable for robust unsupervised 
classification of land cover [3,4,5,13].  
 
While useful for classification and limited composition studies, such high entropy for vegetation cover 
restricts our ability to fully exploit polarisation for quantitative parameter estimation. Yet vegetation 
cover is of prime importance in remote sensing applications. Somehow, in order to proceed, we have to 
find a way to reduce the entropy. Importantly this can be achieved by combining polarimetry with 
interferometry, to form the new topic of imaging polarimetric interferometry or POLInSAR as we now 
show. 
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Figure 2a: Depolarisation and Entropy: 
 

 
 

Figure 2b : Entropy image L-Band Oberpfaffenhofen, Germany DLR ESAR Data 
 
 
 

5. Controlling Entropy: Volume Decorrelation in Radar 
Interferometry 

Radar interferometry employs spatial separation by a baseline vector b of multiple sensors (for single-
pass) or a single sensor at multiple times (for repeat-pass) [18]. It then uses phase difference as a proxy 
for elevation, enabling determination of scatterer height, hence leading to products such as high 
resolution digital elevation model (DEM) generation. Again however, the accuracy of this process is 
governed by phase stability or coherence. In this case we can define a coherency matrix as shown in 
equation 7 
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where ‘x’ corresponds to a single selected polarisation channel. The presence of vegetation is now 
modelled as a finite bounded vertical random distribution of scatterers with a spatial weighting to 
account for the fact that scatterers deeper in the volume will have a smaller influence due to wave 
extinction. With this model, the coherence of vegetation can be expressed as shown in equation 8 
[19,22] 
 

˜ γ ve
iφ zo( ) =

px r( )px
* r + b( )

px r( )px
* r( ) . px r + b( )px
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    p1 =
2σ

cosθ
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4π∆θ
λ sinθ

≈
4πBn

λRsinθ (8) 
 
where Bn is the normal component of the baseline to the line of sight. There are two key features of this 
model: 
 

• Coherence (and therefore entropy) can now be controlled by selecting the baseline Bn.  
• The interferometric coherence is independent of ‘x’ i.e. of polarisation 

 
The first means that, unlike in polarimetry, we can now design the sensor to control the observed 
entropy of vegetation scattering (contrast equations 6 and 8). However, the second seems to indicate 
that we do not need polarisation diversity, as equation 8 does not change with ‘x’. Why then do we 
need to consider POLInSAR? The answer to this apparent contradiction is hidden in equation 8 itself. 
We see that the coherence is a function of several parameters, the unknown height of the vegetation , 
the unknown wave extinction and the unknown ground topographic phase. It follows that one channel 
of interferometry by itself cannot be used for unambiguous parameter retrieval. The situation is further 
complicated by the fact that for microwaves the extinction can be relatively small and hence there can 
be penetration of vegetation right down to the underlying surface. This requires us to consider 
combined surface and volume scattering, so forcing us to modify equation 8 to at least a two-layer 
model as shown in equation 9 [19,20,21,22]. 
 

˜ γ x = eiφ zo( ) ˜ γ v + µx

1+ µx                                                                                                                   (9) 
 
where xµ  is the ratio of surface-to-volume scattering, which changes with frequency, vegetation 
density and surface conditions. However, it is now that polarisation diversity helps, as from figure 2b 
we see that surface scattering has low entropy and hence we can control its influence in 9 by changing 
‘x’ at the same time as leaving the volume coherence unchanged. Consequently by using POLInSAR 
we can increase the number of observations faster than the number of unknowns and hence achieve 
parameter estimation with a coherence or entropy under our control. This is one reason why there is 
such an interest in developing POLInSAR sensors for vegetation mapping [22,23,24]. Several further 
examples can be found as part of the proceedings of a recent ESA funded workshop focussing on this 
topic (http://earth.esa.int/polinsar/).  
 
Figure 3 shows an example POLInSAR product, obtained using the L-band airborne E-SAR sensor 
operated by DLR in Germany. Here we show a radar-derived quantitative tree height estimation 
overlaid on a radar-derived DEM. It uses the model of equation 9 with polarisation diversity over ‘x’ to 
isolate the height hv and φ(z0) dependence and provide a map of tree height over the mountainous 
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terrain. Quantitative comparisons with in-situ measurements indicate an accuracy of height estimation 
around 10%. [21,22,24]. While tree height is itself a useful product, it can also provide the basis for 
various important secondary products. For example, in Figure 4 we show a forest biomass map derived 
using the height data in Figure 3 coupled to allometric equations derived from forestry tables for this 
region [24]. In the upper Figure we also show a conventional SAR image of the scene, which displays  
 
 
 

 
 

Figure 3: Tree Height and Topography Estimated using L-Band 
DLR  E-SAR Polarimetric Interferometric Data 

 
none of the important forest structural information seen in the height/biomass products. This nicely 
illustrates the potential ‘information gain’ obtained by using POLInSAR sensors for vegetation 
applications. 
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Figure 4 : HH RCS image (upper) and radar derived tree height/biomass map  
for the same scene (lower) (see reference [24]) 

 
6. Conclusions and Future Developments 

In this treatment we have developed as a theme the importance of multi-channel phase in radar remote 
sensing and used it to support the idea of combining polarisation diversity with interferometry in future 
radar sensors. Key to success is the generalised coherence or entropy and key to robustness the 
development of physical models for the interaction of polarised waves with natural surfaces. We have 
concentrated on one important example, namely tree height and biomass estimation, but there are many 
other application areas where this technology is being considered. Table I provides a selective survey 
of different geo-physical parameters and examples of the types of algorithms currently being 
developed. We can see that polarimetric and/or interferometric phase appears in every area. This table 
provides a ‘snapshot’ in time, each area is ongoing in research and development and exciting future 
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technology innovations such as bistatic radar and satellite radar constellations will require parallel 
improvements in our understanding of the interaction of polarised waves with natural media in order to 
fully exploit the scientific and commercial potential of radar in remote sensing. 
 
By using more than 2 polarimetric data sets polarimetric interferomerty can be extend to more complex 
approaches. One of possible approache is differential polarimetric interferometry. By using 3 or more 
temporal separated data sets it could be possible to enhance the potential of conventional differential 
interferometry by using the polarimetric information in order to analyse the changes in scattering 
processes over time. POL-IN-SAR imaging, when applied to ‘Repeat-Pass Image Overlay 
Interferometry’, provides differential background validation and measurement, stress assessment, and 
environmental stress-change monitoring capabilities. 
 

Another approach currently under investigation is polarimetric SAR tomography, which is the 
extension of conventional two-dimensional SAR imaging principle to three dimensions. A real three-
dimensional imaging of a scene is achieved by the formation of an additional synthetic aperture in 
elevation by a coherent cobination of images acquired from several parallel flight tracks. It can be seen 
as a direct approach to resolve the SAR scattering ambiguity problems. The introduction of 
tomographic SAR offers the possibility of a direct localisation and identification of all scattering 
contributions in a volume. This greatly extends the potential of SAR, particularly for the analysis of 
volume structures like for example forests as shown in Figure 5. 

 

 
 

Figure 5 Tomographic slice generated from 13 parallel flight tracks with a mutual distance of 20m. 
Sensor: DLR ESAR in L-band. Scene: Onberpfaffenhofen, Germany. (Reigber[25]) 
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Product Radar Parameter Polarimetric and Interferometric  
Measurement Parameters 
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Slope 

anglelook radar 

slopeazimuth tan
slope rangetan

tancossin
tantan

=

=
=

−
=

φ

ω
γ

γφφ
ωβ

 

φ = tan−1 2Re (SHH − SVV ).SHV
*

4 SHV
2 − SHH + SVV

2

 

 

 
 

 

 

 
 

−
π
4

≤ β =

φ + π
4

    if φ ≤
π
4

φ + π
4

−
π
2

  if φ >
π
4

    

 

 
 

 
 

≤
π
4

        

 

 

12,14 

True 
Ground 

Topography 

 

zo = zref +
ˆ φ 

kz

kz =
4π∆θ
λ sinθ

≈
4πBn

λRsinθ

 

 

ˆ φ = arg(˜ γ HH −VV − ˜ γ HV 1− L( )) 
A = ˜ γ HV

2 −1,

B = 2Re((˜ γ HH −VV − ˜ γ HV ).˜ γ HV
* ),

C = ˜ γ HH −VV − ˜ γ HV
2

AL2 + BL + C = 0 ⇒ ˆ L 
 

 

21,22,23

Vegetation  
Component 
Structure 

 

m =
> 1   prolate particles
1  spherical particles
<1  oblate particles

 
 
 

  

 

1
2
++

+
=

r

r

m
m

P
ε

ε
 

V =
4 SHV

2

SHH + SVV
2

⇒ a = (1− 2V ),b = −2(1+ 3V ),c = (1− 7V )

⇒ aP 2 + bP + c = 0 ⇒ ˆ P 

 

 

4,16,17 

Vegetation 
Height and 
Extinction 

hv = top height in m
σ = mean extinction (m-1)
θ =  angle of incidence
ˆ φ =  ground topographic 
        phase (see above)

 

min
hv ,σ

L1 = ˜ γ HV − ei ˆ φ p
p1

e p1hv −1
ephv −1

    

where p =
2σ

cosθ
p1 = p + ikz

 
 
 

  
 

20,21,22

 
Table I : Examples of Geophysical Parameter Estimation using Radar Polarimetry and Interferometry 
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Appendix A: 
POLInSAR Applications In Remote Sensing 

 
This appendix is part of a REVIEW presented at the Tutorial on Radar Interferometry and Polarimetry 
performed at 23.05.2004 in connection with 5. European Conference on Synthetic Aperture Radar 
(EUSAR), 24.05.2004 - 27.05.2004, Ulm, Germany, by Shane R. Cloude (School of Electrical and 
Electronic Engineering University of Adelaide, South Australia, 5005, Australiae-mail : 
scloude@eleceng.adelaide.edu.au); Compare:VDE.com/ITG 

A.1. INTRODUCTION 
 
Polarimetric SAR Interferometry (POLInSAR) was first developed for applications in remote sensing in 
1997 using SIRC L-Band data [1,2]. In its original form it involved generating phase differences 
between interferograms formed using different polarization combinations. These phase differences were 
later observed to be correlated with vegetation height [2]. However, it was quickly realized that more 
accurate estimates of height could be obtained by correcting the phase differences using coherent wave 
scattering models [3,4,6]. Since then there have been several groups working on the development and 
inversion of suitable models for the interpretation of POLInSAR data.  A particularly useful model, 
which presents a good compromise between physical structure and model complexity is a variant of that 
first developed by Treuhaft et al [3,4]. This 2-layer model is widely used in interferometric SAR 
(InSAR) applications. Here we review its main structure and importance in POLInSAR. 
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The basic radar observable in POLInSAR is the 6x6 coherency matrix of a pixel, defined as shown in 
equation 1 
 

k.k*T =
T11 Ω12

Ω12
*T T22

 

 
 
 

 

 
 
 
      k =

1
2

Shh
1 + Svv

1 Shh
1 − Svv

1 2Shv
1 Shh

2 + Svv
2 Shh

2 − Svv
2 2Shv

2[ ]T
      -1) 

 
where superscripts 1 and 2 denote measurements at the two ends of the baseline. We have further 
partitioned the matrix into 3 x 3 polarimetric coherency matrices Tii and polarimetric inteferometry Ωιϕ.  
Generally this matrix must be estimated by multi-look processing of the data using a local window 
centred on the pixel of interest. Consequently, full matrix estimation follows a complex Wishart 
distribution and this enables characterisation of the fluctuation statistics in POLInSAR data [5]. 
According to the 2-layer vegetation model, first derived in [ 4] and extended for fully polarimetric 
interpretation in [6], the complex interferometric coherence for a random volume over a ground can be 
derived as shown in equation 2 and shown schematically in figure 1 where w is a 3 component unitary 
complex vector defining the choice of polarization [2], σ  the mean wave extinction in the medium, kz 
the vertical wavenumber of the interferometer (following spectral range filtering) and θ the mean angle 
of incidence. The angles φ and φ2 are the phase centres of the bottom of layers 1 and 2 respectively. 
 

d(z)=exp(−σ(ztop−z))+mgδ z−zo( ) kz =
4π

λ sinθ
δθ z = zo + hv 

z = zo

z = 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Phase Reference 
 

 
 

Figure 1: Schematic representation of the 2-Layer coherence model for vegetated land surfaces 
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Tv is the 3 x 3 diagonal coherency matrix for the volume scattering and Tg the reflection symmetric 
ground scattering coherency matrix, defined as shown in equation 3 [6] 

 

TV = mv

1 0 0
0 µ 0
0 0 µ

 

 

 
 
 

 

 

 
 
 
   0 ≤ µ ≤ 0.5     Tg = mg

1 t12 0
t12

* t22 0
0 0 t33

 

 

 
 
 

 

 

 
 
 

                                   - 3) 

 
This two-layer model is supported by radar tomographic experiments at L-band [7,8]. For example, 
figure 2 shows vertical profiles for 20m high spruce stands in the three polarization channels [8]. Note 
the similarity to figure 1 and the distinct ground signal, with a minimum in the HV channel. Each profile 
was obtained as a lateral average at each vertical position. Closer examination of the relative profiles 
shows that <|2*HV|>2 = <|HH-VV|>2 as expected for the random volume assumption in figure 1 and Tv 
in equation 3. This supports the use of a random rather than an oriented volume for L-band forest remote 
sensing.  
 
 
 

 
Further, by assuming that the canopy extends from crown to ground then we can simplify equation 2 by 
setting φ1 =φ2. Later we shall examine the consequences of this assumption, but for the moment we 
assume the bottom of the canopy corresponds to the ground surface. 
 
By combining equations 2 and 3 we obtain the following explicit equation for the complex coherence 
 

˜ γ =
w*T (eiφ1 I2

V + e
−

2σhv
cosθo Tge

iφ1 )w

w*T (I1
V + e

−
2σhv
cosθo Tg )w

=
w*T (eiφ1v−1I2

V + eiφ1v−1Tg )w
1+ w*Tv−1Tg w

        v−1 =
1

w*T I1
V w

                  - 4)

 
which can be rewritten as the equation of a straight line in the complex plane as 
 

ˆ γ w( )= eiφ1
ˆ γ v + µ w( )
1+ µ w( )

= eiφ1 ˆ γ v +
µ w( )

1+ µ w( )
1− ˆ γ v( )

 

 
  

 

 
  

= eiφ1 ˆ γ v + L w( ) 1− ˆ γ v( )( )       0 ≤ L w( ) ≤1

                                        - 5) 

 

 

 
 
 
 
 
 

 
 
 

Figure 2: Vertical profiles of L-band Spruce forest scattering from polarimetric radar tomography [8] 
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where the ground-to-volume scattering ratio µ includes the effects of wave extinction in the medium and 
is defined as 

µ w( )=
2σ

cosθo (e
2σhv

cosθ 0 −1)

w*TTg w
w*TTV w

  ≥ 0                                                    - 6) 

 
Note that µ is positive semi-definite and that the max/min values of this function versus polarization are 
given by the eigenvalues of a contrast optimization problem since 
 

max
w

w*TTB w
w*TTA w

    ⇒     TA
−1TB wopt = µwopt                                                - 7) 

 
The eigenvalues µi are non-degenerate, due to the strong polarization dependence of ground scattering, 
and this lends support to the variation of coherence with polarization in equation 4. We note that the 
three eigenvectors of this problem are not mutually orthogonal. This is in contrast to the situation when 
differential propagation effects are important, when the optimum w vectors are related to the propagation 
eigenpolarisations, which for a single vegetation layer are mutually orthogonal [10,11]. Note also that for 
a reflection symmetric ground with azimuthally symmetric vegetation cover (as implied by equation 3), 
the minimum eigenvalue will be obtained for the HV channel. In the more general case, the coherence 
optimizer [1,2] can be used to find the max and min ground components in equation 6. 
 
Consequently, in equation 5 only µ is a function of polarisation. This arises since γv is a polarization 
independent volume integral as shown in equation 8.  
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Figure 3 : Coherence variation versus tree height and mean extinction 
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In the limit that the wave extinction is zero this reduces to an elementary sinc function.  Figure 3 shows 
how the volume coherence varies as a function of vegetation height and extinction for a vertical 
wavenumber kz = 0.2 (corresponding to a 20m baseline at L band for the DLR E-SAR airborne system. 
Note that the coherence falls with increasing vegetation height as a consequence of volume 
decorrelation. However, the effect of unknown extinction makes the relationship between coherence and 
height ambiguous.  
 
As well as the coherence amplitude, consideration must also be given to variation of the phase of the 
observed interferogram. According to equation 8, the presence of vegetation causes an offset in the 
estimation of the interferometric phase of the ground topography given by half the vegetation height (or 
more as the extinction increases). This offset decreases with increasing ground component but is always 
present, biasing the estimation of ground topography. Note that the above vegetation-plus-ground 
scattering model makes no restrictions about the observed phase difference between the elements of a 
single scattering matrix. These relative polarimetric phase differences are caused by a polarisation 
dependent scattering phase term introduced by the scatterer and cancel each other when an interferogram 
is formed by using the same polarisation at both ends of the baseline. This is not the case when the 
interferogram is formed by using different polarisations at either end of the baseline. In this case 
topographic and scattering related coherence and phase information is mixed. Hence care is required to 
distinguish the polarimetric interferometric and polarimetric phase angles. This distinction was 
overlooked in [9], where the authors proposed a relationship between these two phase angles which has 
only limited validity. 
 
Inversion of equation 5 is greatly facilitated by employing a geometrical interpretation inside the unit 
circle of the complex coherence plane. Figure 4 shows how the model maps coherence points from 
equation 5 onto a line in the complex plane. This line has three important features: 
 

ˆ γ v

1− ˆ γ v
visible line

P 
 

φ 

Q 

Unit Circle

Im(γ) 

Re(γ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: The line model for polarimetric variation of interferometric coherence 
 
 
1) The line intersects the circle at 2 points. One of these is the underlying topography related phase 
(shown as the point Q in figure 4). The other is a false solution and must be rejected by the inversion 
process. 
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2) The volume coherence γϖ lies at one end of the line (µ= 0). It is shown as the point P in figure 3. This 
point is central to the estimation of height and extinction and needs to be estimated from the data 
 
3) The visible length of the line in the data may only be a fraction of PQ and neither P nor Q may be 
directly observed. The visible length depends on baseline, operating frequency and vegetation density 
[6]. However the line can be extrapolated to enable parameter estimation as we now show. 
 

A.2. POLINSAR Model Inversion 
 
Inversion of equation 5 involves taking observations of the complex coherence at a number of different 
polarizations and then minimizing the difference between the model predictions and observations in a 
least squares sense. In most previous studies [6] this has been implemented as a six-dimensional 
optimisation problem using standard iterative procedures. Due to the non-linear nature of the 
optimisation problem, the obtained solution depends strongly on the choice of the starting values. Poor 
starting values may lead to ambiguous and/or unstable parameter estimates [15,17,18,19]. However, we 
can clarify the requirements of the inversion by breaking the process down into three separate stages as 
follows: 
 
Stage 1 : Least Squares Line Fit 
 
The first stage is to find the best-fit straight line inside the unit circle of interferometric coherence. To do 
this we vary two phase variable ψ and ψ2 as shown in figure 5.  
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Phase-based least square line fit 

min
φ1φ2

ε2∑  

Unit circle 

ψ2 

ψ1 ε 

 
Each pair defines a line and we choose the pair that minimises the MSE between the line and set of 
coherence points as shown. One way to do this is to use a total least squares line fit to the real and 
imaginary components of the data and then use the line parameter estimates to secure the intersection 
points. Alternatively a faster least squares line fit in the real and/or imaginary parts can secure an 
estimate of the minimum error solution [14].  An alternative method based on a maximum likelihood 
approach using the complex Wishart distribution has recently been outlined in [21]. Phase centre 
estimation based on the ESPRIT processing technique has also been employed for this purpose [22]. 
 
2) Coherence bias for low coherence values. Standard boxcar methods overestimate low coherence 
values and hence distort the line parameters [13]. Either unbiased estimators should be used or the 
interferometer design should avoid low values of coherence through judicious choice of the baseline. 
The bias reduces with increasing coherence and with increasing N. 
 
3) SNR variations can cause loss of coherence, again distorting the line. This is a potentially serious 
issue as SNR is generally a function of polarisation. Fortunately, such variations are seen mainly in 
surface scattering and light vegetation cover and not in forestry applications.  
 
4) Temporal decorrelation. In repeat-pass systems, coherence can fall due to changes in the scene 
between passes. To avoid this, single pass polarimetric interferometry is preferred. We note from 

 

Polarimetric Interferometry and Differential Interferometry 

RTO-EN-SET-081 6 - 19 

 

 



equation 1 that volume temporal decorrelation effects will not necessarily destroy the line structure, only 
lower the coherence so causing additional problems through 1) and 2) above. For example, in the 
presence of wind driven vegetation decorrelation, only the coherent volume integral factor  in 
equation 2 is modified. The effect is to reduce the coherence magnitude without changing the phase of 
the integral. This can be modelled as a multiplicative scalar factor γ

I2
V

t, the temporal decorrelation and 
equation 5 must then be modified as shown in equation 10. 
 
This remains the equation of a straight line and both φ and µ are invariant to such transformations. 
However the height/extinction estimation becomes ambiguous. Regularisation of the solution can be 

achieved by assuming a fixed value for the mean extinction, as we show later. A second problem is that 
the coherence values decrease and this increases the variance of the phase/coherence estimates according 
to equation 9.  

˜ γ = eiφ γ t ˜ γ v −
µ

1+ µ
1− γ t ˜ γ v( )

 

 
 

 

 
                                                 -  10)

 
5) Even if all other factors 1-4 are minimised, the line model assumption may not be correct. This can 
arise for several reasons, such as when the vegetation becomes oriented and we have differential 
extinction and propagation phase. In this case the volume coherence itself becomes a function of 
polarisation. A suitable statistical confidence test for the line can be applied as shown in [14]. Oriented 
volume effects can also be identified through the presence of orthogonal eigenvectors and the rank order 
of the coherence values. [10,11].  Recently a technique for determining the coherence region shape has 
been developed [20] although in its current form it takes no account of the intrinsic statistical 
fluctuations in interferometric coherence and phase data. The output from stage 1 is then a set of 
ψ1,ψ2  paired values for each pixel. The next stage involves deciding which of these is the true ground 
phase through the process of vegetation bias removal. 
 
Stage 2 : Vegetation Bias Removal 
 
In the second stage we must choose one of the pair ψ1,ψ2 as the underlying ground topographic phase for 
each pixel. To do this we extract the line from figure 4 and mark the polarization states in rank order as 
shown schematically in figure 6. It follows from equation 4 that the ground-to-volume ratio µ is given by 
the distance along the line as shown in figure 6. We see that the nearer a coherence point is to Q, the 
higher is the corresponding ground-to-volume ratio µ. 
 

eiφ1

ˆ γ v ˆ γ HV          ˆ γ HH −VV         ˆ γ HH +VV

µ w( )=
ˆ γ v − ˆ γ w( )
ˆ γ w( )− eiφ1

 

 

 

µ1 
µ2 
µ3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Relative location of polarisation states along the coherence line 
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While HH+VV and HH-VV can change relative position depending on whether direct ground or dihedral 
effects are dominant, it is very unlikely that the strongest ground-to-volume component will arise in the 
HV channel. This is based on scattering physics, which indicates that dihedral effects in vegetation 
generally lie orthogonal to HV [26], direct ground backscatter at L band has only a weak HV signal 
while canopy scattering has a strong HV signal. Hence it is reasonable to expect that the HV coherence 
channel will be ranked furthest away in distance from the true ground phase point Q (see figure 2 for 
experimental validation). Again some care is required, as statistical fluctuations can change the rank 
order and so statistical significance tests are again required. 
 
Nevertheless, this gives us a systematic way of breaking the symmetry between the two points ψ1,ψ2 of 
deciding on the likely ground phase point and of applying the appropriate inversion model (random 
volume plus ground or oriented volume for example).  Using this procedure we can now select the 
appropriate model and generate an interferogram, the phase of which, φ, corresponds directly to the true 
ground topography estimate. Note that this can be achieved through a combination of line fitting and 
rank ordering of coherence, both of which are fast processes to compute. As an alternative strategy to 
bias removal, the two points can initially be kept and each used in a stage 3 height estimation procedure 
(see below). As long as the tree height is less than the π height of the interferometer, then only one point 
will yield a good model fit thus enabling bias removal to be undertaken in stage 3. This provides a better 
quantitative approach but incurs the extra overhead of having to solve the model twice instead of only 
once for each point. 
 
Stage 3 : Height and Extinction estimation 
 
To estimate the two remaining parameters, height and extinction, we use the estimate of ground phase 
φ together with equation 8 to find the intersection point between the coherence line and the curve 
corresponding to the height/extinction variations. Figure 7 demonstrates the geometry of this intersection 
process. The ground phase in this simulation lies at zero degrees and we show 3 simulated coherence 
values along the line. By fixing σ at two different values and then varying the height, we obtain two 
coherence loci as shown. Where the curve intersects the line we have a candidate γϖ point.   
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Figure 7: Geometrical interpretation of height and extinction estimation 
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We show two such intersections, one of which crosses the line to split the observed coherence values. 
This cannot be a physical solution, as it generates negative µ, which from equation 6 is not possible. We 
must therefore take as the first candidate solution, parameters which cause the curve to intersect the line 
at the observed coherence value furthest from φ (upper curve in figure 7). This ensures non-negative 
ground scattering components for all observed polarizations but makes the assumption that for the 
intersection coherence point, the ground-to-volume scattering ratio µ is zero. This point then becomes 
our estimate of γϖ. Hence unambiguous height/extinction estimation with single baseline polarimetric 
interferometry requires that γϖ be observed in the data. The robustness of the height inversion process 
then rests on this assumption. The basic problem arises because all intersection points beyond the 
furthest coherence are also valid solutions for the volume coherence (figure 8). They represent 
height/extinction combinations that yield a volume coherence which both satisfies the model of equation 
5 and the observed data. Note however that γϖ must itself lie on the line and hence the ambiguous 
solutions are also constrained to this line. This is an important observation, as from figure 6 the multiple 
solutions represent monotonically increasing ground contribution with distance along the line (figure 8).  
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Figure 8: Line model ambiguity region 
 

This permits us to regularize the solution by making assumptions about the minimum ground-to-volume 
ratio in the data. This ambiguity region has also been noted in [15,19] although in [19] a different 
regularization approach was employed. Note that since we know the phase point φ from stage 2, we can 
easily locate the furthest coherence point in the data. This becomes our estimate of the volume coherence 
ˆ γ est . From the baseline data we can estimate kz and then pre-calculate a look-up table (LUT) of γϖ as a 

function of hv and σ using equation 8. By comparing ˆ γ este
−iφ  with the LUT, we can then secure estimates 

of the height and extinction without the need for iterative optimization algorithms. Simulations have 
shown that in order to secure around 10% height accuracy, the minimum ground-to-volume scattering 
ratio needs to be less than -10dB [27]. From the symmetry assumptions in equation 3 it follows that the 
HV channel will most often satisfy this requirement and hence cross polarization measurements are very 
important for reliable height estimation. 
 

A.2.1 The Effect of Temporal Decorrelation on Height/Extinction 
estimation 

We now consider how the above algorithm for height/extinction estimation must be modified in the case 
of repeat pass systems when temporal decorrelation becomes an important issue. Equation 10 shows that 
the line model is still valid and hence the line fit and ground phase estimation procedures are unchanged. 
However, the effect of temporal decorrelation is to make the coherence amplitude too small for the 
observed vegetation bias φϖ.  This is shown as the dotted line in figure 9. The true volume coherence is 
shifted radially to the origin by the temporal decorrelation and so the geometrical effect is to rotate and 
stretch the line about the unit circle ground phase point as shown in figure 9. 
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Figure 9 : The effect of temporal decorrelation on the line model 
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Hence there will no longer be an intersection between the height/extinction curve and the observed 
volume coherence point, as in figure 7.  To secure a solution we must therefore move the observed 
volume coherence point radially in the coherence plane to compensate. The problem is we have no 
indication from the data itself how much temporal decorrelation has occurred. Hence the required radial 
scale factor is unknown. However, we can increase the coherence until we secure a first unique solution 
as intersection with a height/extinction curve. This will occur first for zero extinction but will then also 
be valid for a whole family of increasing extinction values as shown in the double line region of figure 9.  
This line region will extend out to the unit circle. Hence we conclude that extinction estimation becomes 
ambiguous in the presence of temporal decorrelation. A sensible regularization strategy is to set the 
extinction to zero or some other pre-determined value. In the zero extinction case, we resort to the simple 
sinc function model for volume coherence and the tree height is then simply related to the maximum 
vegetation bias φϖ as shown in figure 9. With the sinc function model, this phase is just half the 
vegetation height and so the phase/height/extinction estimates in the presence of temporal decorrelation 
can be calculated as shown in equation 11 
 

temporal decorrelation   ⇒   φ = φ1,   hv =
2φv

kz

,   σ = 0                                - 11) 

 
 

A.2.2 The Effect of Vertical Tree structure on Height/Extinction 
estimation 

 
So far we have assumed a uniform vertical density profile in the vegetation. However natural vegetation 
has significant species and age related variations in vertical structure. Figure 10 shows an example for 
Scots Pine trees in the Glen Affric region of Scotland [16]. Here we see tall trees with a high thin 
canopy. A simple way to model this structure is to add an extra phase parameter to the 2-layer model, 
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essentially making it a three layer structure. Figure 11 shows a schematic of this new model. The 
essential modification is to move the canopy away from the ground phase point and this introduces a 
new phase parameter φχ as shown. With this modification the line model takes the form shown in 
equation 12 
 
 

z =
4π

λ sinθ
δθ 

Phase Reference

 k

z = zo + hv 

z = zo 

z = 0 

z = zo + z c 

 
 

Fig. 10 Vertical tree canopy structure in natural vegetation (Scots Pine) and 3-layer modification of 
scattering model to account for elevated canopies 
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1+ µ
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                                                 -  12)

 
 
 
Geometrically this represents a rotation of the volume coherence point about the origin. Again the line 
model is still valid but the observed volume coherence is now phase shifted away from its true position. 
Hence for a given height, the volume coherence is higher than expected based on the simple two-layer 
model. Nonetheless, this can be accommodated in the model by artificially increasing the extinction. 
With reference to figure 3 we can see that a fixed coherence (horizontal line) can be made to correspond 
to increasing tree height simply by increasing the extinction. Hence the effect of higher thinner canopies 
is to increase the extinction estimate with only a small error in the height. For this reason vertical 
structure is not too serious a limitation for SBPI if only tree height and ground topography are the 
important parameters of interest.  The extinction however becomes an unreliable measure of tree density. 
 
If we have vertical structure combined with temporal decorrelation then equation 11 can overestimate 
tree height by as much as a factor of 2. In this case only the ground topography estimation becomes a 
reliable parameter.  However, if information is available about the canopy extent of the trees in the scene 
based on species or age information for example, then equation 11 can be generalized to 
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temporal decorrelation +canopy fill F  ⇒   φ = φ1,   hv =
φv

kz(1− F
2

)
,  σ = 0                     - 13) 

 
where F = (hv-zc)/hv is the fractional canopy fill of the trees. 
 
 

A.2.3 The effect of oriented structure in the volume 
We have seen that for POLInSAR remote sensing applications we require there to be significant 
volume decorrelation. The presence of vegetation causes a loss of coherence and a phase bias. For a 
single layer of height hv and mean extinction σ we have shown that this coherence can be written 
as shown in equation 14  
 

˜ γ ve
iφ (zo ) =

2σ eiφ (zo )

cosθo(e2σ hv / cosθ o −1)
eikz z'e

2σ z'
cosθ o dz'

0

hv

∫                                        - 14) 

 
However structured volumes, such as agricultural crops and even forests at low frequencies have different 
extinctions in different polarisations. Hence the volume by itself then requires characterisation by an ordered 
triplet of coherence values as shown in equation 15.  
 
Equation 15 looks favourable for inversion, as it has four unknown parameters on the right and 6 
observations on the left. However, by itself equation 15 is a poor predictor of coherence, as it ignores surface 
effects and as we have shown, the presence of the soil-air interface beneath the vegetation strongly 
influences the coherence 
 

σV > σ H ⇒ ˜ γ VV > ˜ γ HV > ˜ γ HH ≥ 0

˜ γ HH =
2σ H  eiφ (zo )

cosθo(e2σ H  hv / cosθ o −1)
eikz z'e

2σ H  z'
cosθ o dz'

0

hv

∫   

˜ γ HV =
σ H + σ V eiφ (zo )

cosθo(e(σ H +σ V ) hv / cosθ o −1)
eikz z'e

(σ H +σ V ) z'
cosθ o dz'

0

hv

∫   

˜ γ VV =
2σV  eiφ (zo )

cosθo(e2σ V  hv / cosθ o −1)
eikz z'e

2σ V  z'
cosθ o dz'

0

hv

∫   

                       - 15) 

 

To progress we must use the two-layer model, but now modified to account for differential extinction.  The 
general coherence for a vegetation+surface layer may be written as shown in equation 16 
 

˜ γ x = eiφ zo( ) γ v kz,σ a,hv( )+ µx

1+ µx

                                                     -16) 

Here µ is the ratio of surface-to-volume scattering and is generally also a function of polarisation ‘x’. Hence 
equation 15 must be modified to a triplet of such expressions which form the  oriented-volume-over-ground 
or ‘ovog’ model as shown in equation 17 
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˜ γ HH = eiφ γ v 2σ H ,hv( )+ µHH

1+ µHH

˜ γ HV = eiφ γ v σ H + σV ,hv( )+ µHV

1+ µHV

˜ γ VV = eiφ γ v 2σV ,hv( )+ µVV

1+ µVV

                                                - 17) 

This model now has 7 unknowns on the right and only 6 observations on the left. Hence in the presence of 
orientation effects we need to fix one parameter for inversion. There are various strategies for the inversion 
of equation 17 being pursued in the literature, for example we can assume that one of the µ values is zero, 
that the ground phase φ is known or as an important special case that the differential extinction is zero in 
which case we return to our random volume over ground model. Equation 17 has a convenient geometrical 
representation inside the unit circle of the complex plane. Figure 11 shows this structure. The surface phase φ 
acts as a focus for three rays, representing each of the three primary polarisation combinations. Importantly, 
the coherence in each polarisation channel is confined to move along its own ray, depending on the value of 
µ. The volume coherences (defined by µ = 0), establish a special triplet of points along the rays as shown. 
This geometry clearly demonstrates that the biggest error source for unknown orientation effects will be a 
bias in the ground phase estimate (the three points still almost form a line but intersect the unit circle in the 
wrong place).  This in turn will lead to an underestimation in height. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 ψ = f (σ a ,σ b ,hv )
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Ground topography 
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Figure 11 : The geometry of the oriented-volume-over-ground ‘ovog’ model 
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A.3. ALGORITHM ASSESSMENT USING Simulated SAR data 
In previous publications, validation of these algorithms has been provided using airborne L and P band SAR 
data across a range of test sites [6,16,19]. These have also addressed the more practical aspects of radar data 
processing required for operational implementation of these algorithms. Here we concentrate on a different 
type of validation, involving the use of coherent electromagnetic scattering models. In order to illustrate 
application of the above algorithm to POLInSAR data, we employ a canopy scattering model with 
predetermined structure and attempt reconstruction of the height and ground topography from complex 
coherence data. Note that this model is not the same one used for the algorithm development. To generate a 
fair test of algorithm performance, a full Maxwell equation based wave propagation and scattering model is 
used to generate the test data. DSTL Malvern have developed such a capability to model forest scattering in 
detail, employing a 3-D voxel based vector wave propagation and scattering model tied to a detailed 
description of branch, leaf and trunk distributions [24,25]. Penetration and scattering are calculated as a 
function of wavelength and polarisation. The underlying surface scattering is modelled as a tilted Bragg 
surface and mutual interactions such as ground-trunk and canopy-ground are incorporated in the model. The 
technique is fully coherent and so can be used to model volume decorrelation effects in polarimetric radar 
interferometry. The simulated data is free from temporal decorrelation, motion or co-registration errors and 
SNR effects. Hence we can apply the full inversion scheme to the data as a ‘best case’ scenario. 
 
The SAR simulator was initialised using a point spread function matched to the airborne DLR E-SAR system 
with 0.69m azimuthal and 1.38m ground range resolution.  Simulations were carried out at L-band (23cm 
wavelength) and at 45 degrees angle of incidence from 3km altitude with 10m and 20m horizontal baselines.  
These parameters closely match those used for operational E-SAR trials over forest test sites. 
 
A full random canopy (F = 1) of 10m height placed above a flat Bragg surface was chosen as the test 
configuration, The branches chosen to populate the random canopy had dimensions chosen from Gaussian 
distributions. Branch length had mean 1.5m and standard deviation 0.2m, branch radius had mean 1.5cm and 
standard deviation 0.2cm. Branch length distribution was truncated at 2.0m and 1.0m, and radii at 1.0cm and 
2.0cm. There were 59,153 branches in the canopy with dimensions 56m by 56m by 10m, corresponding to a 
mean volume fraction of 0.2%. In the simulation branches are further subdivided into smaller elements 
depending upon the resolution cell size, so that over 200,000 elements existed in the simulation. 
 
Figure 12 shows simulated SAR images of the canopy scene. Note that the canopy scattering appears in all 
polarization channels, including the cross-polar channel HV. The surface scattering has zero cross 
polarization but has different scattering components in HH and VV as consistent with the Bragg model. 
From analysis of the model, the ground contributions beneath the canopy are attenuated by a (one-way)  
mean extinction of 0.28 dB/m.  
 
We concentrate on a linear azimuth transect through the data as shown. Figure 13 shows sample coherence 
loci for the point P. Coherence was estimated using a 60-look local boxcar average. In 13 a) we show the 
interferometric coherence loci for a 10m baseline. Also shown are the least square line fits through the data 
points. The true ground phase is 0 degrees and we clearly see the vegetation bias in all polarization channels.  
Note how the line model is a good fit and the intersection point lies close to the true ground phase. In 13 b) 
we show, for the same test point P, the 20m baseline data for comparison. Here we see a decrease in 
coherence due to the larger baseline but note that the line fit is still good and unit circle intersect remains 
close to the true value. Note however the increased variance of coherence estimates, in agreement with 
equation 9.  
 
In both plots, the HV channel is identified by a circle symbol and we see it has the largest bias as expected 
from the 2-layer model.  We show 5 polarisation states in all, HH, VV, HV, HH+VV and HH-VV. Note that 
by simply using the phase difference between polarizations we would seriously underestimate the true 
height. As an example figure 14 shows the estimated height obtained from the phase difference between HH 
and HV interferometric channels.  We see that the average estimate is around 2.5m, well below the true value 
of 10m. Hence model based corrections are required to obtain better estimates of height. Here we apply the 
2-layer model via the geometrical inversion procedure developed above. Figure 15 shows the output from the 
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3-stage inversion model. Here we show the combined tree height and ground topography estimation for the 
azimuth transect. We see much improved height estimation and the removal of vegetation bias from the 
topography estimate.  
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Figure 12 : Simulated L-band SAR images of 10m canopy 

 
 
Note how the estimates are poor at the edges of the stand, This arises because of the boxcar averaging 
employed, mixing surface and volume scattering. This causes the local coherence estimates to be low which 
leads locally to poor parameter estimates. Adaptive edge filtering techniques are being investigated to help 
resolve this problem [23].  
 

A.4. Conclusions 
In this section we have developed a simplified 3-stage inversion method for the estimation of underlying 
ground topography, vegetation height and mean extinction from single baseline polarimetric interferometric 
SAR data. We have highlighted key potential sources of error in the inversion procedure and shown that to 
secure good estimates we require one main assumption, namely that in one (not all) of the observed 
polarization channels, the ground-to-volume scattering ratio is small (less than –10dB to secure 10% height 
accuracy). This highlights the importance of measuring the HV cross-polarized channel for accurate height 
estimation.  
 
A second key issue is the length of the visible line inside the coherence unit circle. If the line length becomes 
too short then the inversion becomes unstable. This can arise at very high frequencies, where extinction by 
vegetation dominates the variation of ground scattering with polarization. However, as long as the visible 
line length is greater than the complex coherence fluctuations, the line model can be easily extrapolated to 
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find the ground phase point. Hence the technique is inherently robust against the presence or absence of 
ground-trunk dihedral effects and/or topographic variation. Consequently it can still provide parameter 
estimates, even in difficult terrain such as forested slopes where the dihedral return can be attenuated due to 
topographic variations. 
 
The issue of line visibility can also be used to examine the frequency dependence of the inversion process. 
Extinction generally increases with frequency and so the line visibility can be expected to decrease as 
wavelength decreases. However, at very low frequencies the propagation itself can become anisotropic (a 
function of polarization). In this case the line model is no longer valid, leading to a consequent decrease in 
parameter accuracy. For these reasons most of our studies have been centred on L-band as a good 
compromise between the two extremes and because of its well developed technology for air and space borne 
deployment. However, some initial studies have shown that the technique also applies at P-band for tropical 
forest environments [19]. 
 
We have further considered the effects of temporal decorrelation, vertical structure and volume orientation 
on errors in SBPI inversion and have shown that in the presence of temporal effects, extinction estimation 
becomes ambiguous and resort must be made to phase difference algorithms with structure related correction 
parameters. The effect of vertical structure such as an elevated canopy is to impose a phase transformation 
on the volume coherence term. This is compensated in the 2-layer model by artificially increasing the 
extinction. Finally, the effect of orientation in the volume is to split the coherence loci into a fan of three 
lines centred on the true ground phase. If uncompensated this leads to bias in the ground phase estimate and 
underestimation of height.Coherent SAR simulations using the DSTL vector wave scattering model have 
been used to illustrate the algorithms and demonstrate the need to employ such model based corrections to 
interferometric phase in order to achieve precision vegetation parameter retrieval. These results clearly 
demonstrate that tree height and underlying ground topography can be retrieved from a single frequency, 
single baseline polarimetric sensor. This leads to the possibility of mapping these parameters using air or 
space borne sensors on regional or even global scales. This is especially important given the close 
relationship between tree height and biomass [28,29].  
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Figure 13 a : Sample coherence loci for the point P in figure 12a, 10m baseline 
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Figure 13 b : Sample coherence loci for the point P in figure 12a 20m baseline 
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Figure 14 a : Tree height estimation based on phase difference between HH and HV interferometric channels  
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Figure 14 b : Tree height estimation based on 3 –stage model inversion  
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Appendix B: POLInSAR in target detection Applications 
 
In this section we consider the problem of radar detection of stationary targets obscured by foliage clutter. 
This is a classical detection problem for which the usual solution approach is to reduce the radar centre 
frequency as far as possible, so minimising scattering by the foliage while hopefully maintaining a 
significant target response. These approaches are based on backscatter intensity as the prime radar 
observable.  In this paper we consider a new approach. Here we employ the phase of a radar interferometer 
as the prime observable and attempt the detection of targets by using the variation of phase with polarisation 
to reduce the foliage returns and maintain the target response. In section 2 we provide an introduction to 
polarimetric radar interferometry and consider the nature of the phase signal obtained in volume scattering. 
In section 3 we then extend this argument to consider the influence of a target on the observed phase and 
show how we can use this to develop a filter for enhanced target detection. In section 4 we describe a 
processing algorithm based on this analysis of volume scattering and in section 5 summarise the main 
components of a vector wave propagation and scattering model used to simulate coherent radar returns from 
targets embedded in foliage. In section 6 we present results from a simulation based on this model of corner 
reflectors embedded in a pine forest and demonstrate the ability of this technique to provide enhanced 
detection by showing raw and filtered signal channels for a cluster of hidden trihedral reflectors.  
 

B.1. Polarimetric  Interferometric SAR (POLInSAR) 
 
The techniques considered in this paper employ imaging radar interferometry, a dual sensor technology 
which coherently combines backscatter measurements from two ends of a baseline B, shown as positions 1 
and 2 in figure 1 (see [1] for a general review and extensive background references). The sensors are 
assumed to move in parallel linear trajectories in the x-direction. This enables generation of a synthetic 
aperture for both sensors and hence high resolution imaging in the range/azimuth or x,z’ plane. By co-
registering these two images we can then form the phase difference and obtain a high resolution 2-D image 
of the variation of interferometric phase in the x,z’ plane. The measurements can either be made by a single 
platform dual antenna system (single-pass) or by repeat visits of a single antenna system (repeat-pass). The 
latter suffers from loss of signal coherence due to any temporal changes in the scene between passes. In this 
paper we ignore such temporal decorrelation effects and concentrate instead on the influence of combined 
surface and volume scattering. 
 
Although interferometry requires the backscatter amplitude to be sufficiently above the system noise level, 
the key observable of interest is not amplitude but the interferometric phase. This is non-zero due to the 
slightly different propagation path lengths, ∆r, from sensors 1 and 2 to a point on the surface. From the 
geometry in figure 1and by assuming we both transmit and receive from points 1 and 2, this phase has the 
form shown in equation 1 (see [1] for a full derivation). 
 

exp(i2k∆r) ≈ exp(i 4π ∆θ
λ

y') ≈ exp(i 4π Bn

λR
y ')

                                                                       - 1) 
 
where ∆θ ≈ Bn/R if R >> B and the co-ordinate y’ is defined as normal to the slant range direction such that 
y’,z’ define a local orthogonal co-ordinate system as shown in figure 1. Note that the interferometric 
sensitivity depends only on the normal component of the baseline, Bn, which depends on the absolute 
baseline B, the baseline orientation angle δ and the angle of incidence θo as defined in figure 1. Transforming 
to the surface y,z co-ordinates using the local angle of incidence θ we can also express equation 1 in the 
modified form exp(i φ(y, z)) as shown in equation 2 
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Here we have further included the possibility of making a wavenumber shift ∆k between the two images [2]. 
As is apparent from equation 2, we can then always remove the ‘y’ dependence of the phase φ by choosing 
∆k based on the geometry of the system. In this case the interferometric phase depends only on the height of 
the scatterer above the reference plane (the z co-ordinate in figure 1). To study any decorrelation in the ‘z’ 
direction, we then define an effective propagation constant using 1 and 2, as shown in equation 3 
 

kz =
4π∆θ
λ sinθ

≈
4πBn

λRsinθ                                                                                                                    - 3) 
 
In foliage examples there will be a random distribution of scatterers in the vertical direction. This causes 
fluctuations in the phase that are manifest as a drop in the interferometric coherence γ  [1]. In polarimetric 
systems we have 3 channels of complex data at positions 1 and 2 characterised by the elements of the 
coherent scattering matrix SHH, SVV and SHV [3,4]. In this case the fluctuations can be characterised by a 6 x 6 
Hermitian coherency matrix [Θ] as defined in equation 4 [3]. To generate the appropriate coherence we need 
first to project the channels onto a 3 dimensional complex unitary weight vector w1 to generate a complex 
scalar s1 as shown in equation 5. Similarly we can define a different weight vector w2 and scalar s2 at position 
2. The unitary weight vectors can be parameterised in the form shown in equation 5. Here α is the selected 
scattering mechanism and β the orientation of that mechanism in the plane of polarisation. Further details of 
the relationship between w and polarisation parameters can be found in [3,4]. The interferometric coherence 
for arbitrary polarisation is then defined as the average normalised product of the scalar projections as shown 
in equation 5 [3] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Radar interferometry and surface geometry. 
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                  - 4) 
 
 
Note that the coherence amplitude and phase can be combined and represented as a point inside the unit 
circle of the complex plane. We see that the coherence and phase can be expressed in terms of 3x3 block 
elements of the 6 x 6 matrix [Θ]. In equation 4 we have shown two different representations of [Θ] [4]. The 
coherency form is generated by a Pauli matrix expansion of the symmetric 2 x 2 complex scattering 
amplitude matrix [S]. This leads to a polarimetric coherency matrix [T] as shown in 5. The covariance matrix 
[C] follows from a straightforward vectorial expansion of [S]. The two are unitarily equivalent [4] and so 
have the same eigenvalues but different eigenvectors. We shall make use of both representations in this 
paper. To evaluate this coherence we now need to estimate the block 3x3 matrices [T] and [Ω].  
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                                           - 5) 
 

B.1.1  The Coherence of Volume Scattering 
 
In many vegetation problems, the scatterers in a volume will have some residual orientation correlation due 
to their natural structure (branches in a tree canopy for example). In this case wave propagation through the 
volume is characterised by two eigenpolarisations a and b (which we assume are unknown but orthogonal 
linear polarisations). Only along these eigenpolarisations is the propagation simple, in the sense that the 
polarisation state does not change with depth into the volume [5]. By assuming that the medium has 
reflection symmetry about the (unknown) axis of its eigenpolarisations, we obtain a polarimetric coherency 
matrix [T] and corresponding covariance matrix [C] in the a,b basis for backscatter from the volume as 
shown in equation 6 [4] 
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We can now obtain an expression for the matrices [T11] and [Ω12] for an oriented volume extending from z = 
z0 to z = z0 + hv as vector volume integrals as shown in equations 7 and 8 [5,6] 
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                                                 - 8) 
 
where for clarity we have dropped the brackets around matrices inside the integrals and defined the 
following terms 
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Here R is a rotation matrix to allow for mismatch between the radar co-ordinates and the projection of the 
eigenstates into the polarisation plane. P is a 3 x 3 differential propagation matrix accounting for differential 
phase (birefringence) and attenuation (dichroism) in the medium via the complex differential propagation 
constant τ. The waves propagate with extinction σ where σa ≥ σb and refractivities (1-index of refraction) χ 
[5].This now enables us to generate the coherence for any choice of weight vector w in equation 5. However 
we are primarily interested in the variability of coherence with changes in w and so employ the coherence 
optimiser developed in [3], which requires solution of an eigenvalue problem as shown in equation 12. 
 
[T22

−1] [Ω12]
*T [T11

−1] [Ω12] w2 = λw2

[T11
−1] [Ω12] [T22

−1] [Ω12]*T w1 = λw1

 
 
 
  0 ≤ λ = γopt

2 ≤1
                                                   - 12) 

 
The eigenvalues of these matrices are all real positive and indicate the variability of coherence with 
polarisation. For example, if the three eigenvalues are equal then the coherence is invariant to polarisation. 
As the eigenvalues are invariant to unitary transformations of the vector k we can replace [T] by [C] and [Ω] 
by [Γ] in equation 12. This is important because to account for the effects of propagation on the polarimetric 
response of an oriented volume, it is simpler to employ the covariance [C] in the a,b basis rather than the 
coherency matrix [T]. We can then calculate the 3 complex optimum coherence values such that 
1≥ ˜ γ 1 ≥ ˜ γ 2 ≥ ˜ γ 3 ≥ 0 as shown in equation 13  (see [6] for details). The key steps involved are to first 
convert from [T] to [C] in 12, assume that [C11] = [C22] and then show that [C11]-1 [Γ12] is diagonal in the a,b 
basis using the analytic expressions in equations 6,7 and 8. The inverse matrix can be easily calculated as a 2 
x 2 sub-matrix from the symmetry constraint of equation 6.  This then confirms that the maximum coherence 
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is always obtained in the a,b basis and evaluation of the corresponding eigenvalues in equation 12 leads to 
the following expressions for the ranked coherence optima. 
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Equation 13 shows that the maximum coherence is obtained for the medium eigenpolarisation with the 
highest extinction.  This makes physical sense as the polarisation with highest extinction has the minimum 
penetration into the vegetation and hence the smallest amount of volume decorrelation. Similarly, the lowest 
coherence is then obtained for the orthogonal polarisation, which has the minumum extinction and hence 
better penetration into the vegetation and more volume decorrelation. The cross polar channel, which 
propagates into the volume on one eigenpolarisation and out on the other, has a coherence between these two 
extremes. Clearly for foliage penetration the lowest extinction is the most useful. If the vegetation cover is 
strongly oriented then direct use of 13 via the optimisation process in equation 12 can be used to align the 
radar co-ordinates with the eigenstates and hence select the polarisation that obtains minimum extinction by 
the vegetation. 
 
However in many applications, especially at higher microwave frequencies, forest cover will be random and 
any orientation effects are likely to be weak [7]. For this reason, to deal with higher frequency problems we 
must consider a special case of equation 13 when the vegetation shows full azimuthal symmetry in the plane 
of polarisation [4]. In this case the coherency matrix [T] for the volume is diagonal with 2 degenerate 
eigenvalues of the form shown in equation 14 [3].  
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                                                                                                      - 14) 
 
where η depends on the mean particle shape in the volume and on the presence of multiple scattering [4]. 
More importantly, the eigenvalues in equation 13 must become equal. This arises when σα = σβ = σ i.e. when 
the extinction in the medium becomes independent of polarisation.  
Figure 2 summarises this special case. Here we show a target covered by a vertical layer of vegetation of 
thickness hv, inside of which the wave is extinguished by a scalar extinction coefficient σ as shown. It 
follows from equation 13 that the observed phase fluctuations or coherence for the volume only case is given 
by equation 15, where Tv is the diagonal polarimetric coherency matrix of the vegetation (equation 14). Here 
we see a ratio of volume integrals that is independent of polarisation i.e. the observed coherence will be the 
same for all polarisation channels w. The penetration depth is the same for all polarisations and the fixed 
phase centre lies somewhere between half the vegetation height and the top as we now show.  
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                                                   - 15) 
 
In the limit that the extinction σ is zero, equation 15 reduces to the elementary sinc function as shown in 16. 
This shows that the vegetation layer causes a phase shift or vegetation bias given by half the vegetation 
height. As the extinction increases, this phase offset moves up in the canopy, until for very high extinction 
there is no penetration and the vegetation bias equals the vegetation height. 
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2                                                                                                           - 16) 
 
Note that the phase variance or coherence is also a function of height. As the height increases so the 
coherence initially drops. Hence in order to obtain a good estimate of the phase we need to employ multi-
look averaging. The detailed statistics of fluctuations in estimates of phase and coherence were first 
developed by Lee et al. [8] and further analysed by Touzi et al [11]. However, a simplified analysis provides 
convenient expressions for the Cramer-Rao bounds on the variance of the estimates as shown in equation 17 
[9] 

varφ >
1− γ 2

2N γ 2         varγ >
1− γ 2( )2

2N
                                                                                          - 17) 

 
Here N is the equivalent number of looks in the averaging process. We see that as N increases so the 
variance of the estimates decreases and that the phase variance increases with decreasing coherence.  
 
We conclude from this analysis that if orientation effects are present in vegetation cover then polarimetric 
interferometry can exploit this to select a channel with the minimum extinction and hence achieve optimum 
foliage penetration. This maximum penetration channel corresponds to the minimum eigenvalue of the 
coherence optimiser. However, to counter this we have seen that when the vegetation becomes random then 
the extinction no longer varies with polarisation. In this case we seem to have no choice but to employ a 
longer wavelength that leads to a low extinction. However, by exploiting the polarimetric sensitivity of 
interferometric coherence to the presence of a target beneath the random vegetation, we can offset this 
requirement to achieve significant sub-clutter visibility as we now show. 
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B.2. Two-Layer Vegetation Model for Target Detection 
 
In the previous section we considered the vegetation layer alone. Here we extend the analysis to consider a 2 
–layer problem consisting of a random vegetation layer above a localised scattering centre, which acts as a 
model for a vehicle or other target beneath the canopy [7,10]. Figure 2 shows the geometry to be considered. 
We assume homogeneity in the y-direction and so consider only z or height variations.  In this way the 
problem can be specified by a 1-dimensional vertical profile function d(z) as shown. The vegetation is 
modelled as a random volume with scalar extinction σ. The target is located at some unknown depth zo and 
has an apparent magnitude mg. Note that the azimuthal symmetry assumption applies only to the vegetation 
layer and that the target can have arbitrary form (including rotations due to sloped terrain/target orientation 
etc.). The observed coherence must now be modified from equation 15 to account for the presence of the 
target. This we can do as shown in equation 18, where the angles φ and φ2 are the phase centres of the target 
and bottom of vegetation layer respectively. 
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                                           - 18) 
 
Collecting terms we can write the coherence as shown in equation 19, which also shows explicitly the 
polarisation dependence of the total observed coherence. 
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The parameter µ is the target-to-volume scattering ratio and is defined in equation 20  
 

µ w( )=
2σ

cosθo (e
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cosθ 0 −1)
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  ≥ 0

                                                                                - 20) 
 
Since both T matrices in equation 20 are Hermitian, it follows that µ is a positive semi-definite function. We 
see that the presence of a target beneath the canopy influences the observed coherence. If the target 
scattering changes with polarisation then this will be reflected in changes in the observed coherence. Hence 
by using polarimetric interferometry we can detect the presence of targets by looking at the variation of 
coherence with polarisation. For vegetation only this will yield zero or small changes, however bright the 
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canopy return. However, when a target is present the changes will be larger hence enabling sub-clutter 
visibility of targets. 
 
We note from equation 19 that we can write the coherence in terms of a real function L that varies from 0 to 
1. This defines a line in the complex plane inside the unit circle [10]. Figure 3 shows a geometrical 
representation of this line. We see that by measuring the coherence and relating it to the end points we can 
estimate µ the ground-to-volume scattering ratio for that polarisation. The red (left) point is the µ=0 or 
volume coherence alone. This we can approximate by measuring the coherence in a channel with small-
expected target signal, the cross-polarised HV channel for example. The yellow (right) point is the bare earth 
topography and is not directly visible in the data because of the vegetation cover. However by extrapolating 
the line beyond its visible length we can estimate the bare earth topography from the unit circle intersection 
[10].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: The line coherence model for target+random volume scattering 
 
Note that we obtain an ambiguity with this method as there will be two such intersection points, only one of 
which will correspond to the true ground topography. This can be resolved using rank ordering of coherence 
or a reference digital terrain model (DTM) for the scene [10]. 
 
Having identified a mechanism by which targets can be detected, we now investigate the sensitivity of the 
method to the presence of target scattering. To do this we calculate the derivative of coherence with respect 
to the target-to-volume ratio as shown in equation 21 
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                                                                                                           - 21) 

 
We are particularly interested in the case where µ is less than 1, this being a situation where the volume 
scattering is larger than that from the target. Equation 21 is the product of 2 terms. Concentrating first on the 
µ dependence, we can express this sensitivity by calculating the function L in equation 19, being the 
fractional change in the length of the line due to a presence of a target. We see that even with –10dB of 
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scattering ratio, the shift in coherence is about 10% of the line length. The line length itself is 1− ˆ γ v . Hence 
in order to be able to detect a small change we need to choose the baseline so that the length is maximised. 
This would seem to require that γv = -1 i.e. the baseline is chosen so that the vegetation phase centre lies at 
the π height. However this must also occur with a coherence magnitude of unity. Examination of equation 15 
shows that this requires infinite extinction in the medium. Clearly this is not a practical solution and hence in 
practice the optimum baseline will be a function of both height and wave extinction. As an example, figure 4 
shows how the line length varies with increasing kz for typical values of 10m high trees and 0.3 dB/m one 
way extinction. Note that the line length (in red) increases to a maximum before decreasing again and then 
shows oscillatory behaviour.  
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Figure 4: Line length variation with increasing baseline and minimum coherence along the line. The 
intersection point represents a compromise between sensitivity and resolution. 
 
There is one additional feature that bears on this question of optimum line length, namely the need to 
estimate complex coherence from the data itself. There are two issues, the first is the need for a large 
effective number of looks when the coherence is low. This follows from the Cramer Rao bounds in equation 
17. If the coherence line goes through the origin for example then the phase becomes indeterminate. The 
need for a high effective number of looks (ENL) is serious because it impacts on the resolution requirements 
of the sensor and also leads to a reduced µ value. This arises since, for point targets, the volume clutter 
increases with the ENL while the target RCS does not. Hence we need to minimise the ENL and so 
maximise the minimum line coherence value. The second issue relates to the fact that coherence techniques 
based on standard box-car averaging provide biased estimates at low coherence [11]. While this bias reduces 
with increasing coherence and number of looks it tends to overestimate low values of coherence. This is 
serious as it will give a radial bias to low coherence values and hence distort the line parameter estimates. To 
solve this we must either use unbiased coherence techniques or set a lower limit (set by the ENL) on the 
minimum line coherence.  
 
In either case we seek to maximise the minimum line distance from the origin. By itself this leads us to 
choose a zero baseline, as then all coherences are 1. However, when combined with the need to maximise L 
it leads us to a compromise optimum baseline. This minimum line coherence is shown in blue in figure 4. 

Optimum 
i

maximum line 

minimum 
line 
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We see that the two curves intersect at one point. This is the optimum for that configuration. It combines 
good sensitivity to target scattering and also minimises the ENL required for good estimates. In this case we 
obtain a kz value around 0.15. In general it will be a function of height and extinction.  Global mean tree 
heights lie around 20m and this leads to a rough interferometer design figure of kz = 0.1. The most important 
factor in determining the best baseline is the tree height. It should be pointed out that this parameter can itself 
be estimated from the data using polarimetric interferometry techniques [7,10] and hence the optimum 
baseline can in principle be adapted ‘in the field’ to match local conditions. 
 
Our proposed POLINSAR target detection algorithm is then based on estimation of a scalar radar parameter 
µ, obtained from complex interferometric coherence estimates in different polarisation channels w. The 
parameter µ is dimensionless, being the ratio of all scattered power contributions with an apparent phase 
centre located on the surface, to the total volume scattering. The former includes direct surface returns, the 
desired target backscatter as well as dihedral effects caused by specular surface scattering and secondary 
interactions with the vegetation (ground-trunk returns). The volume returns include all scattering (single and 
multiple) with phase centres displaced from the surface.  It follows from this that the presence of a target 
corresponds to a local maximum in µ. Further, from the conventional SAR intensity channel we obtain an 
estimate of the sum of these two contributions s(w) as shown in equation 22. 
 

 s(w) =
cosθo(1− e

−
2σhv

cosθ 0 )
2σ

w*TTV w + e
−

2σhv

cosθ 0 w*TTg w
                                                         - 22) 

 
Hence we can solve equations 20 and 22 to obtain an estimate of the surface scattering components as shown 
in equation 23 
 

 w*TTg w = e
2σhv

cosθ 0
µ(w)

1+ µ(w)
s(w)

= e
2σhv

cosθ 0 L w( )s(w) = e
2σhv

cosθ 0 F(w)    0 ≤ L(w) ≤ 1                                                                    - 23) 
 
The function L(w) acts as a filter on the intensity channel to produce an image domain with better signal to 
clutter ratio. Note that because we always see the ground components through the canopy, they are 
influenced by the local extinction and height of the vegetation as shown in 23. However, all ratios between 
polarisation channels (such as HH/VV etc.) are independent of height and extinction (under the assumption 
of a random volume). This is important for target classification studies. Using the above results we can now 
devise a general algorithm for target detection using polarimetric interferometry. 
 
 

B.3. POLINSAR Target Detection Algorithm 
 
We assume access to two single look complex fully polarimetric SAR images that have been co-registered 
and phase and amplitude calibrated. We also assume that there are no temporal decorrelation or signal to 
noise ratio problems in the data.  We then propose a generic processing chain as follows: 
 
Stage 1 : Coherence Estimation 
 
The first stage is to generate complex coherence estimates for a number of polarisation states w. In all cases, 
equation 5 is used with the appropriate w vectors. For simplicity we adopt a boxcar averaging process for 
coherence estimation, employing an M x M window centred on the pixel of interest. However we must 
realise that this will lead to coherence bias for low coherence values, as discussed in [11]. It will also lead to 
edge effects on the boundaries between different scatterer types, when the true coherence will be 
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underestimated because of mixed scattering mechanisms.  Here we ignore such effects but note that forest 
edges are of significant tactical importance in hidden target applications. Initial development of coherence 
estimators that are more suitable for such problems are presented in [12]. 
 
Stage 2 : Least Squares Line Fit 
 
The next stage is to find the best-fit straight line to the polarimetric coherence values inside the unit circle 
(using a reference DTM if available to fix the unit circle intersection point). From these line parameters we 
then project each of the measured complex coherence values γi onto the least squares line. This projection 
then ensures real µ estimates as required in equation 20.  
 
Stage 3 : Select the reference volume coherence channel 
 
For single baseline systems we cannot estimate the volume coherence point uniquely [10]. There are a set of 
candidate volume coherence values defined geometrically as all points on the line which lead to an observed 
positive semi-definite function µ(ω). Nonetheless, in practice we can select a polarisation channel we expect 
to be close to the true volume point. Often this will just be the cross polar HV channel, where we expect a 
small target-to-clutter ratio in most cases. In this study we employ the HV channel throughout. A more 
general strategy is to employ the polarisation with maximum vegetation bias [10]. 
 
Stage 4 : Estimate Ground Scattering Components and Filtered Intensity 
 
Having estimated the extreme points on the coherence line, we can now estimate the µ value in any desired 
polarisation channel. Figure 5 shows how we can estimate these two values for the HH+VV and HH-VV 
channels matched respectively to trihedral and dihedral scatterers. Here we show two cases, background 
clutter (lower) and the presence of a target (upper). From µ we can then obtain L(w) using equation 19.  We 
then estimate the mean backscatter intensity in the w channel using a the same boxcar average as for the 
coherence and finally multiply this intensity by the function L to obtain F(w).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Polarimetric target-to-volume scattering ratio estimation. 
 
To quantify the potential of this method to suppress forest clutter and provide enhanced detection, we now 
turn to consider its application to simulated POLINSAR data. 
 

B.4. POLINSAR Target Simulations 
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To enable an assessment of algorithm performance, a Maxwell equation based wave propagation and 
scattering model is used to generate test image data for trihedral and dihedral corner reflectors embedded in 
foliage clutter. Several approaches to the modelling of coherent forest microwave scattering have been 
developed in the literature [13-17]. Our simulation employs a 3-D voxel-based, vector wave propagation and 
scattering model coupled to a detailed description of tree architecture and forest structure [15-17]. The SAR 
simulation is fully polarimetric, coherent and deterministic, and so may be used to model volume 
decorrelation effects, as required in polarimetric SAR interferometry. 
 
Simulation of the SAR images is a multistage process that begins with the construction of a detailed 
computer model of the scene to be imaged. This model incorporates a digital terrain map (DTM) of the 
underlying surface (generated artificially or supplied from observation), and soil description parameters 
including local roughness, correlation length, soil type [18] and moisture content. A map of tree heights and 
locations is calculated that corresponds closely to observed distributions [16], the stand density employed 
here being moderate at 0.055 stems/m2, with a mean height of 18m and height standard deviation of 0.6m. 
The forest canopy is populated with Scots Pine tree models in the form of collections of layered, dielectric 
cylinders calculated according to biologically determined growth rules [15]. The tree models are 
architecturally correct (see Figure 6.) and include details of the size and distribution of pine needles along 
living branches. The water contents of deadwood, sapwood, heartwood and pine needles [16] complete the 
physical description of the forest canopy.  Finally, targets, modelled as collections of perfectly conducting, 
interacting surfaces, are positioned throughout the scene. Modelled in this fashion, the forest canopy 
represents a distribution of discrete, dielectric objects. As such L-Band scattering by the canopy may be 
calculated using the mean-field approach pioneered by R H Lang [19, 20], and subsequently extended to 
layer geometry and employed in backscatter modelling of grass canopies [21] and of forest canopies at C-
band [22]. The mean–field approach is a coherent wave model that approximates the locally incident field at 
any discrete scattering object by the mean wave propagating in the layer, and calculates scattering using a 
Green’s function for the mean wave.  
For a homogeneous medium the Green’s function for the mean wave is everywhere the same. However the 
forest canopy is inhomogeneous on a scale commensurate with the resolution of the SAR system and it is 
desirable to incorporate the effects of canopy inhomogeneity into the simulation. In this way targets 
deployed so as to be visible to the SAR sensor through gaps in the canopy will not appear attenuated by 
some global mean attenuation constant. To achieve this we employ the form of the layered Green’s function 
of the mean wave [20,21], but estimate the wavenumber of the mean wave locally for the aperture used to 
focus each scattering interaction. In practice this entails dividing the canopy volume into sub-volumes 
(voxels) on a scale determined by the sensor resolution, and such that each voxel contains a large number of 
scattering objects. The detailed forest model is used to determine the occupancy of each voxel, and then 
effective permittivity of the voxel is calculated using the Foldy-Lax approximation [21, 22] with vegetation 
permittivities determined using the model described in [24] at frequencies used by the SAR instrument. Tree 
branches are divided into many elements in order to better estimate voxel volume fractions. To calculate 
backscatter from any element of the scene the effective wavenumber is determined using the mean properties 
of voxels intercepted by the line of sight between the current sensor position and the scene element. The 
dependence of the effective wavenumber, and hence of the attenuation of scattering amplitudes, both upon 
frequency and polarisation, arises naturally in the model from the physical and biophysical descriptions. 
SAR is a coherent imaging process, and thus the mean field model is an appropriate model to adopt in the 
simulation. Scattering of the coherent, mean wave is focused by the SAR instrument using the phase history 
of the scattered signal [25]. Coherent phase histories are modelled in the simulation, but the contribution to 
the image from scattering of the incoherent wave is not modelled directly. This may be incorporated in the 
form of a noise signature. Calculation of simulated SAR images proceeds by forming the coherent 
superposition of focused scattering events, each arising from a scene element much smaller than the SAR 
system resolution. The simulated SAR image may be described as   
 

∑=
j

jj sRxQFRxP ),,(ˆ ),( 0000

                                                                                                      - 24) 
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where ),( 00 RxP  is the polarimetric pixel value at cross range 0x  and range 0R , jF
 is the polarimetric 

scattering amplitude associated with the scene element, and ),,(ˆ
00 jsRxQ  is the complex system point 

spread function depending upon the effective scattering centre js . Scattering amplitudes jF
 may be 

calculated as averages both in azimuth (along the synthetic aperture) and frequency (across the SAR 

bandwidth). The system point spread function Q̂  is determined from the specified SAR imaging geometry, 
bandwidth and processing options. The platform motion is ideal, and the platform is modelled as having a 
straight, uniform trajectory. Each scene element has an effective scattering centre, which determines the 
point of focus of backscatter in the two dimensional SAR image. For first order or direct backscatter the 
effective scattering centre is simply the centre of the scene element. For higher order returns, involving 
multiple reflections, the effective scattering centre is determined rapidly at run-time using knowledge of the 
scattering path and the antenna motion. The centre of focus in the SAR image is simply the projection of the 
effective scattering centre onto the SAR imaging plane, which may be calculated using near-field or far-field 
models. Simulated single-look, complex SAR images are output in ground range and azimuth. 
 
Direct-ground contributions are calculated from ground facet elements using a hybrid 
deterministic/stochastic approach. Ground facet RCS values depend on local incidence through a physical 
scattering model (the Bragg or small perturbation model), to which speckle is added. Local speckle statistics 
are assumed Gaussian and scattering amplitude values are drawn from distributions using the mean RCS for 
the facet as determined from local incidence. A spatially correlated speckle phase model may be used which 
depends upon surface roughness, surface correlation length, wavelength and incidence angle. The correlated 
speckle phase model reduces to spatially uncorrelated speckle phase for short wavelength and surface 
correlation length, as well as for large surface roughness. To calculate direct forest clutter, each branch 
element is addressed in turn with scattering amplitudes calculated using the mean field and truncated, infinite 
cylinder approximations [26]. No calculation of multi-path between tree elements is performed since this has 
in theory already been taken into account in the mean-field model. We note however that for correct 
calculation of cross-polar returns at higher frequencies than L-band the explicit incorporation of such 
multiple interactions may be necessary [27]. Needle scattering is estimated in a statistical manner, by 
simulating short random walks using a generalised Rayleigh-Gans scattering model for needles [28], and 
scaling these short walks depending upon the number of needles associated with each branch element.  
 
In general the ground has arbitrary roughness and many different scales of variation in height. Calculations 
are limited to the case that the ground may be assumed locally flat, but roughened and tilted. Local 
orientation of the mean surface for ground-element interactions is calculated from the mean slope close to 
the scattering element. Ground-element interactions have effective scattering centres located as the normal 
projection of the true scattering centre in the locally flat, mean surface. Similarly, ground-element-ground 
interactions have effective centres located at the reflection of the element centre in the locally flat, mean 
surface. 
 
Targets are modelled as collections of perfectly conducting surfaces. Each of the target surfaces is divided 
into triangular facets of dimension much less than the system resolution. Multipath scattering amplitudes are 
calculated for each facet in the final surface of a multipath scattering chain using the geometrical optics, and 
physical optics approximations [29]. This model yields accurate RCS estimates, and preserves the expected 
polarimetric responses of known targets types. The effective scattering centre for each such surface facet is 
calculated by tracing the history of the specular path of a multipath event during formation of the synthetic 
aperture. This approximation is consistent with the geometrical optics model used for all but the last 
scattering interaction in any surface scattering chain. Interactions involving up to three surfaces are 
considered in the calculations, which include surface shadowing effects [17]. The method of specular path 
tracing lends itself readily to the modelling of multipath between ground and target when the ground is 
essentially locally flat (over the region traversed by the specular point) and only slightly rough: the ground 
acts as a primary reflecting surface in the multipath chain. Ground and target surfaces are distinguished only 
by their reflection properties: the ground is modelled as a rough dielectric surface, with Fresnel reflection 
coefficients scaled according to the surface roughness using the Rayleigh roughness parameter [30]. 
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Effective scattering centres for direct-element, ground-element and ground-element-ground interactions lie 
respectively above, close-to and below the ground surface. Thus a simulated SAR image of a forest contains 
a direct-canopy image, displaying layover of tree direct reflectivity towards the radar, a ground-canopy 
image displaying projection of the ground-tree reflectivity onto the local mean ground surface, and a ground-
canopy-ground image displaying layover away from the radar. At L-band the ground-canopy and direct-
canopy terms appear to influence most strongly the total clutter level and the ground-canopy-ground terms 
are negligible. Predictions for forest clutter at L-band at 45 degrees elevation of –4dB (HH) –11dB (HV) and 
–8dB (VV) are consistent with those reported in the open literature for similar forests [31]. 
 
 

B.5. Simulation Results 
 
Figure 6 shows model detail of a single tree (on the left) and an optical view of the entire pine forest scene to 
be simulated (on the right). Embedded in this scene is an array of 27 square corner reflectors.  They are a 
mixture of trihedrals and dihedrals at two orientation angles, namely 0o and 22.5o, the latter guaranteeing a 
strong cross-polar response. The details of the target array are shown in figure 7. Three sizes of reflector are 
used, 90, 60 and 30cm. In this way we model a range of different target responses in both polarization and 
radar cross section. The spacing between targets is 14m.  
 

 
   
Figure 6: Detail of an individual tree drawn without needles (left) and view from aperture centre of the 
simulated forest stand (150m x 150m) with hidden in-situ corner reflector array (right). 
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Figure 7: Details of the corner reflector array: TXX is a trihedral of dimension XX cm, DVXX is a vertical 
dihedral, DRXX is a dihedral rotated at 22.5 degrees. The targets are shown with exaggerated dimensions for 
clarity. 
 
 
We model the radar response at L-band or 23cm wavelength. Analysis of the model with and without 
vegetation in place then enables estimation of the mean wave extinction σ. For V polarization this 
corresponds to a 1-way attenuation rate of 0.28 dB/m while for H polarization the extinction is lower, with a 
mean value around 0.14 dB/m. Hence the model predicts some departure from the azimuthal symmetry 
assumption required for the FOPEN algorithm. We found however that the algorithm is fairly robust to such 
levels of differential extinction, although they do seem to act in limiting detection of the smaller targets (see 
figure 10). Future studies and field experiments will investigate the effects of differential extinction in more 
detail. 
 
For validation reasons, we start with a system configuration closely matched to the DLR E-SAR airborne L-
band system [7], which typically operates at an altitude of 3km with a 45-degree angle of incidence in the 
centre of the swath.  The transmitted bandwidth is 100 MHz and the synthetic aperture yields an azimuth 
resolution around 0.75m. We simulate these conditions to obtain an effective sensor resolution of 1.38m in 
ground range and 0.69m in azimuth. The data is then over-sampled to obtain a square pixel size of 0.5m.  
Figure 8 shows simulated L-band SAR imagery for this scene. Four images are shown, corresponding to the 
four transmitter/receiver polarization combinations. We note that it is difficult to see the corner reflectors in 
the background foliage clutter, although for example in the cross-polar channel some of the rotated dihedrals 
can be seen.  
 
Figure 9 shows the single look interferometric phase for this scene. In the upper portion we show the raw 
phase and in the lower the residual phase following flat earth removal of the spatial frequency variation in 
range due to changes of the angular separation of the antennas for a  flat earth geometry. We see that the 
local topography is relatively flat with the presence of the trees causing volume decorrelation or increased 
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phase variance. Again in this single channel interferogram (the VV Channel) there is no clear indication of 
the presence of targets. It is only when we combine many such interferograms at different polarizations that 
we can detect the targets more clearly as modulations in the mean phase and variance. We now apply the 
processing algorithm of section 4 to interferograms in 2 channels, namely HH+VV and HV. 
 
 

 
 
Figure 8: Simulated L-Band, polarimetric SAR Images of the corner reflector array deployed in the model 
forest. 
 
To illustrate the level of processing gain achievable with multi-channel interferometry, we show in figure 10 
a comparison of the unfiltered image intensity (using a 5 x 5 window) and the POLINSAR filtered intensity 
F(w).  In both cases we display a dynamic range of 25dB of the peak signal in the scene. In this way we can 
quickly visualize any signal processing improvements. We have selected the HH+VV polarization channel 
corresponding to w = (1,0,0), which is matched to the presence of trihedral corner reflectors and so show 
only the portion of the image around the cluster of TXX targets in figure 7. By changing w we can select 
different target types in the scene but here we concentrate on the results for the trihedral reflectors only. 
We can see that the large trihedrals (T90) are seen both in the raw and filtered intensity data but the T60 and 
T30 reflectors cannot be easily discriminated from the background clutter in the standard intensity channel. 
The filtered image however shows a strong reduction of the background clutter, allowing both the T90 and 
T60 reflectors to be much more clearly seen. We note that the T30 reflectors still cannot be detected. The 
reason for this can be traced to the � values for the three target types. We can obtain estimates of µ directly 
from the separate simulation of target and volume components in the SAR simulator.  This analysis shows 
that T90 has µ = 5 dB, T60 has µ = -2dB and T30 µ = -10 dB.  Analysis of residual orientation and structural 
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effects in the forest canopy also indicate a maximum filter suppression of –10dB. This explains the poor 
detection of T30 in this environment.  
However, despite this, we note that the T60 elements are now much more clearly discriminated from their 
background. The impact of this on detection statistics is demonstrated in figure 11. Here we show 3-D 
images of the raw and filtered SAR channels. In the raw channel we see that the 60cm reflectors are 
obscured by background clutter, leading to a large number of false alarms in the detection process. In the 
filtered channel on the other hand we can see that the algorithm has suppressed the clutter while maintaining 
the signal from the target. In the case of the 60cm reflectors, setting a threshold of -3dB their peak value now 
obtains zero false alarms in the scene. We conclude that the POLINSAR processing gains are significant and 
warrant further studies of more complex vehicle targets embedded in forest clutter. We also plan further 
analysis of coherent random vector wave propagation and scattering effects in different forest environments 
to obtain a more robust assessment of algorithm performance.  

 
Figure 9: Interferometric phase (upper) and residual phase following flat earth removal (lower) for forested 
scene. 
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Figure 10: Multi-look intensity (upper) and filtered intensity (lower) images of trihedral corner targets in 
foliage (5 x 5 window, HH+VV channel). 
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Figure 11: Normalised backscatter of trihedral sub-array for unfiltered HH+VV channel (upper) and 
POLINSAR filter output (lower) 
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B.6. Conclusions 
 
In this section we have introduced the idea of combining multiple interferograms at different polarizations to 
enhance the detection of targets hidden by foliage. In the case where there are strong orientation effects in 
the volume scattering we have shown that the coherence optimizer can be used to select the polarization with 
minimum extinction and hence optimum penetration of the foliage. In the extreme case of random volume 
scattering, we have shown that we can design a filter based on the invariance of volume decorrelation to 
polarization state. The presence of a target beneath the volume then breaks this symmetry and leads to a 
linear variation of coherence inside the unit circle of the complex plane. By normalizing this variation to the 
distance between the ground topography unit circle and invariant volume decorrelation points, we can 
generate a filter with range 0 to 1. This filter then multiplies the intensity channel so that in regions where 
there is volume scattering only the intensity is reduced to zero while the target response is maintained. In this 
way the target to clutter ratio can be improved and targets detected using a threshold based on conventional 
constant false alarm rate (CFAR) techniques, applied now to the filtered intensity channel 
 
We have illustrated the application of this method to data generated by a full vector wave based SAR 
simulator which takes as its input detailed three dimensional forest structural and target information, as well 
as details of the SAR point spread function and generates as output the complex SAR data which accounts 
for the phase of each scattering element in the scene. In this way the simulator can be used to model volume 
decorrelation as a function of polarization. We have made simulations of high resolution SAR imagery at 
23cm wavelength (L-band) of a pine forest scene containing an array of corner reflectors of different sizes 
and orientations. In this paper we have concentrated on detection of a cluster of 9 trihedral reflectors and 
have shown significant improvements in detection performance. This suggests the possibility of enhanced 
target detection in foliage at the relatively high L-band frequency, which has many advantages in the future 
deployment of space and air borne systems. Future studies will address the detection of more complex target 
types such as vehicles and issues relating to improved sensor resolution.  
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